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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 

with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 

found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 

find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 

to show all working.

1. [Maximum mark:  17]

 (a) Associativity and commutativity are two of the five conditions for a set  S  with 

the binary operation * to be an Abelian group; state the other three conditions. [2 marks]

 (b) The Cayley table for the binary operation �  defined on the set T p q r s t={ , , , , }  

is given below.

�  p q r s t

p s r t p q

q t s p q r

r q t s r p

s p q r s t

t r p q t s

  (i) Show that exactly three of the conditions for { , }T �  to be an Abelian 

group are satisfied, but that neither associativity nor commutativity are 
satisfied.

  (ii) Find the proper subsets of  T  that are groups of order 2, and comment on 
your result in the context of Lagrange’s theorem.

  (iii) Find the solutions of the equation ( )p x x x p� � �= . [15 marks]

2. [Maximum mark:  8]

The elements of sets  P  and  Q  are taken from the universal set 

{ , , , , , , , , , }1 2 3 4 5 6 7 8 9 10 .  P ={ , , }1 2 3  and Q ={ , , , , }2 4 6 8 10 .

 (a) Given that R P Q= ∩ ′ ′( ) , list the elements of  R . [3 marks]

 (b) For a set  S , let S*  denote the set of all subsets of  S ,

  (i) find P* ;

  (ii) find n R( )* . [5 marks]
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3. [Maximum mark:  14]

 The relation  R  is defined on the set �  such that for a b, ∈� ,  aRb  if and only if 

a b3 3 7≡ (mod ) .

 (a) Show that  R  is an equivalence relation. [6 marks]

 (b) Find the equivalence class containing 0. [2 marks]

Denote the equivalence class containing  n  by Cn .

 (c) List the first six elements of C1. [3 marks]

 (d) Prove that C Cn n=
+7

 for all n∈�. [3 marks]

4. [Maximum mark:  7]

 (a) The function :g →� �  is defined by g n n( ) | |= −1  for n∈� .  Show that  g  is 

neither surjective nor injective. [2 marks]

 (b) The set  S  is finite.  If the function :f S S→  is injective, show that  f  is 

surjective. [2 marks]

 (c) Using the set �+ as both domain and codomain, give an example of an injective 
function that is not surjective. [3 marks]
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5. [Maximum mark:  14]

The group  G  has a unique element,  h , of order 2.

 (a) (i) Show that ghg −1  has order 2 for all g G∈ .

  (ii) Deduce that gh hg=  for all g G∈ . [5 marks]

Consider the group  G  under matrix multiplication consisting of four 2 2×  matrices, 

containing a unique element,  h , of order 2, where h =
−









1 0

0 1
.

 (b) (i) Show that  G  is cyclic. 

  (ii) Given the identity e =










1 0

0 1
, find a pair of matrices representing the 

other two elements of  G , where each element is of the form a b

c d









 ,

a ,  b ,  c , d ∈�. [9 marks]


